产品名称:DIA定量蛋白质组学
技术介绍:
DIA(Data-Independent Acquisition,数据非依赖性采集)是一种无歧视性和无随机性的蛋白质组分析技术, 将质谱全扫描范围分为若干个窗口,然后对每个窗口中的所有离子进行检测、碎裂,从而无遗漏、无差异地获得样本中所有离子的信息, 降低样本检测的缺失值,同时提高定量准确性和重复性,实现大样本队列中高稳定,高精准的蛋白质组定量分析。
技术优势:
1. 福建安布瑞结合PCT样本前处理技术,可以实现临床微量样本 (如FFPE、穿刺活检、泪液等)的高深度蛋白质定量分析,组织样本最低送样量只需0.1mg。
2. 使用多种蛋白质组学搜库软件,包括OpenSWATH, EncyclopeDIA, DIA-NN等,并能够综合分析结果,提高蛋白的鉴定量和定量准确度。
3. 开发了优化特异性谱图库的方法,发明专利:基于优化数据库(Sub-Lib)的数据非依赖性质谱检测方法。
项目案例:
参考文献:
1. Gillet et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012.11(6)
https://www.mcponline.org/article/S1535-9476(20)30442-4/fulltext
2. Röst et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nature Methods. 2016.13(9):741-748
https://www.nature.com/articles/nmeth.3959
3.Röst, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nature Biotechnology. 2014.32:219-223
https://www.nature.com/articles/nbt.2841
4.Guo, et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nature Medicine. 2015.21(4):407–413.
https://www.nature.com/articles/nm.3807
5. Searle et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nature Communications. 2018. 9(1): 1-12
https://www.nature.com/articles/s41467-018-07454-w
6.Xu, et al. In-depth Serum Proteomics Reveals Biomarkers of Psoriasis Severity and Response to Traditional Chinese Medicine. Theranostics. 2019.9(9): 2475-2488.
https://www.thno.org/v09p2475.htm
7.Shao, et al. Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nature Communications. 2019. 10(1):2524.
https://www.nature.com/articles/s41467-019-10513-5
8.Zhu, et al. High-throughput Proteomic analysis of FFPE tissue samples facilitates tumor stratification. Molecular Oncology. 2019 Sep;13(11): 2305-2328.
https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.12570
9.Zhang, et al. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics. 2020.20(17-18): e1900276.
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.201900276
10.Demichev, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nature Methods. 2020.17:41-44
https://www.nature.com/articles/s41592-019-0638-x
11.Ge, et al. Computational Optimization of Spectral Library Size Improves DIA-MS Proteome Coverage and Applications to 15 Tumors. Journal of Proteome Research. 2021
https://pubs.acs.org/doi/full/10.1021/acs.jproteome.1c00640
12.Shao, et al. Proteomics profiling of colorectal cancer progression identifies PLOD2 as a potential therapeutic target. Cancer Commun. 2021.
https://onlinelibrary.wiley.com/doi/10.1002/cac2.12240
13.Zhu, et al. Snapshot: Clinical proteomics. Cell. 2021.184(18): 4840-4840.
https://www.cell.com/cell/fulltext/S0092-8674(21)00985-5